Structural and orientational information of the membrane embedded M13 coat protein by (13)C-MAS NMR spectroscopy.

نویسندگان

  • C Glaubitz
  • G Gröbner
  • A Watts
چکیده

Oriented and unoriented M13 coat protein, incorporated into dimyristoyl phosphatidylcholine bilayers, has been studied by (13)C-magic angle spinning nuclear magnetic resonance (MAS NMR) spectroscopy. Rotational resonance experiments provided two distance constraints between Calpha and C&z.dbnd6;O positions of the labelled residues Val-29/Val-30 (0.4+/-0.5nm) and Val-29/Val-31 (0.45+/-0. 5nm) in its hydrophobic domain. The derived dihedral angles (Phi, Psi) for Val-30 revealed a local alpha-helical conformation. (13)C-CP-MAS experiments on uniformly aligned samples (MAOSS experiments) using the (13)C&z.dbnd6;O labelled site of Val-30 allowed the determination of the helix tilt (20 degrees +/-10 degrees ) in the membrane. It is shown that one uniform MAS high-resolution solid state NMR approach can be used to obtain structural and orientational data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Orientational binding modes of reporters in a viral-nanoparticle lateral flow assay.

Using microscopy and image analysis, we characterize binding of filamentous viral nanoparticles to a fibrous affinity matrix as models for reporter capture in a lateral flow assay (LFA). M13 bacteriophage (M13) displaying an in vivo-biotinylated peptide (AviTag) genetically fused to the M13 tail protein p3 are functionalized with fluorescent labels. We functionalize glass fiber LFA membranes wi...

متن کامل

FT-IR spectroscopy of the major coat protein of M13 and Pf1 in the phage and reconstituted into phospholipid systems.

FT-IR spectroscopy has been applied to study the secondary structure of the major coat protein of Pf1 and M13 as present in the phage and reconstituted in DOPG and mixed DOPC/DOPG (4/1) bilayers. Infrared absorbance spectra of the samples were examined in dehydrated films and in suspensions of D2O and H2O. The secondary structure of the coat protein is investigated by second-derivative analysis...

متن کامل

Membrane assembly of M13 major coat protein: evidence for a structural adaptation in the hinge region and a tilted transmembrane domain.

New insights into the low-resolution structure of the hinge region and the transmembrane domain of the membrane-bound major coat protein of the bacteriophage M13 are deduced from a single cysteine-scanning approach using fluorescence spectroscopy. New mutant coat proteins are labeled and reconstituted into phospholipid bilayers with varying headgroup compositions (PC, PE, and PG) and thicknesse...

متن کامل

Solid-State NMR Spectroscopic Approaches to Investigate Dynamics, Secondary Structure and Topology of Membrane Proteins

Solid-state NMR spectroscopy is routinely used to determine the structural and dynamic properties of both membrane proteins and peptides in phospholipid bilayers [1-26]. From the perspective of the perpetuated lipids, H solid-state NMR spectroscopy can be used to probe the effect of embedded proteins on the order and dynamics of the acyl chains of phospholipid bilayers [8-13]. Moreover, P solid...

متن کامل

Identifying anisotropic constraints in multiply labeled bacteriorhodopsin by 15N MAOSS NMR: a general approach to structural studies of membrane proteins.

Structural models of membrane proteins can be refined with sets of multiple orientation constraints derived from structural NMR studies of specifically labeled amino acids. The magic angle oriented sample spinning (MAOSS) NMR approach was used to determine a set of orientational constraints in bacteriorhodopsin (bR) in the purple membrane (PM). This method combines the benefits of magic angle s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochimica et biophysica acta

دوره 1463 1  شماره 

صفحات  -

تاریخ انتشار 2000